Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells.

نویسندگان

  • Trevor M Yeung
  • Shaan C Gandhi
  • Walter F Bodmer
چکیده

Hypoxia is an important regulator of normal and cancer stem cell (CSC) differentiation. Colorectal CSCs from SW1222, LS180, and CCK81 colorectal cancer-derived cell lines are able to differentiate into complex 3D lumen-containing structures in normoxia, whereas in hypoxia, they form undifferentiated dense colonies that have reduced expression of the enterocyte differentiation marker CDX1, lack goblet cell formation, and have increased expression of BMI1 and activated Notch1. Hypoxia increases the clonogenicity of CSCs, which is cumulative as each round of hypoxia enriches for more CSCs. The hypoxic phenotype is reversible, because cells from hypoxic-dense colonies are able to reform differentiated structures when regrown in normoxia. We show that CDX1 is able to stimulate the generation of lumens even in hypoxia and has a negative feedback on BMI1 expression. Knockdown of CDX1 reduces lumen formation but does not affect goblet cell formation, suggesting that enterocytes and goblet cells form from different progenitor cells. Notch inhibition by dibenzazepine (DBZ) allowed CSCs to form goblet cells in both normoxia and hypoxia. Finally, we show that Hif1α, but not CA9, is an important mediator of the effects of hypoxia on the clonogenicity and differentiation of CSCs. In summary, hypoxia maintains the stem-like phenotype of colorectal cell line-derived CSCs and prevents differentiation of enterocytes and goblet cells by regulating CDX1 and Notch1, suggesting that this regulation is an important component of how hypoxia controls the switch between stemness and differentiation in CSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line

Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...

متن کامل

The effect of fish-oil derived eicosapentaenoic acid on cell proliferation and caspase-3 activity in human colorectal cancer cell line

Background: Using natural compounds with low toxicity on normal cells and high efficacy on malignant cells is highly appreciated for treatment of colorectal cancer (CRC). In the present study, the effect of fish-oil derived eicosapentaenoic acid (EPA) on the cell number, cell proliferation rate and caspase-3 enzyme activity in LS174T human colorectal cancer cell line was investigated. Methods:...

متن کامل

Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin

Objective(s):The colorectal cancer stem cells (CSCs) with the CD133+ phenotype are a rare fraction of cancer cells with the ability of self-renewal, unlimited proliferation and resistance to treatment. Quercetin has anticancer effects with the advantage of exhibiting low side effects. Therefore, we evaluated the anticancer effects of quercetin and doxorubicin (Dox) in HT29 cancer cells and its ...

متن کامل

The effect of mesenchymal stem cell ‑conditioned medium on the proliferation of cancer cell lines, A549 and JEG3

Background: Cancer is a significant public health problem. Some studies indicated the anti-cancer effects of mesenchymal stem cells. These effects are related to stem cells or secretory mediator of them. The aim of this study was to evaluate the impact of condition medium of mesenchymal stem cells on A549 and JEG3 cancer cell lines. Methods: In an experimental study, A549 and JEG3 cell lines p...

متن کامل

Hypoxia Preconditioning Promotes Survival And Clonogenic Capacity Of Human Umbilical Cord Blood Mesenchymal Stem Cells

Background: In recent decade, human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) provide enormous potential for appropriate cell therapy, but they have limited growth potential and cease to proliferate due to cellular senescence, so providing a strategy for increasing the stem cell survival is necessary.  Methods: In this investigation, MSCs characterized by flow cytome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 11  شماره 

صفحات  -

تاریخ انتشار 2011